Direct Minimum Distance Decoding

- Suppose $y = [11 \ 01 \ 11]$.
- Find $\hat{\mathbf{b}}$.
 - Find the message $\hat{\underline{\mathbf{b}}}$ which corresponds to the (valid) codeword $\hat{\underline{\mathbf{x}}}$ with minimum (Hamming) distance from $\underline{\mathbf{y}}$.
 - $\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} d(\mathbf{x}, \mathbf{y})$

89

Direct Minimum Distance Decoding

- Suppose $y = [11 \ 01 \ 11]$.
- Find **b**. -- 3 Lits

• Find the message $\underline{\hat{\mathbf{b}}}$ which corresponds to the (valid) codeword $\underline{\hat{\mathbf{x}}}$ with minimum (Hamming) distance from $\underline{\boldsymbol{y}}$.

For 3-bit message, there are $2^3 = 8$ possible codewords. We can list all possible codewords. However, here, let's first try to work on the distance directly.

Direct Minimum Distance Decoding

- Suppose $\underline{y} = [11 \ 01 \ 11].$
- Find $\hat{\mathbf{b}}$.
 - Find the message $\underline{\hat{\mathbf{b}}}$ which corresponds to the (valid) codeword $\underline{\hat{\mathbf{x}}}$ with minimum (Hamming) distance from $\underline{\boldsymbol{y}}$.

The number in parentheses on each branch is the branch metric, obtained by counting the differences between the encoded bits and the corresponding bits in y.

91

Direct Minimum Distance Decoding

- Suppose $y = [11 \ 01 \ 11].$
- Find $\hat{\mathbf{b}}$.
 - Find the message $\hat{\mathbf{b}}$ which corresponds to the (valid) codeword $\hat{\mathbf{x}}$ with minimum (Hamming) distance from \mathbf{y} .

sin

- Developed by Andrew J. Viterbi
 - Also co-founded Qualcomm Inc.
- Published in the paper "Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm", IEEE Transactions on Information Theory, Volume IT-13, pages 260-269, in April, 1967.

nttps://en.wikipedia.org/wiki/Andi

93

Viterbi and His Decoding Algorithm

• 1991: Claude E. Shannon Award

• 1952-1957: MIT BS & MS

 Studied electronics and communications theory under such renowned scholars as Norbert Wiener, Claude Shannon, Bruno Rossi and Roberto Fano.

• 1962: Earned one of the first doctorates in electrical engineering granted at the University of Southern California (USC)

• Ph.D. dissertation: error correcting <u>codes</u>

 2004: USC Viterbi School of Engineering named in recognition of his \$52 million gift

CUniversity of

Andrew J. Viterbi

Andrew J. Viterbi

- Cofounded Qualcomm
- Helped to develop the CDMA standard for cellular networks.
- 1998 Golden Jubilee Award for Technological Innovation
 - To commemorate the 50th Anniversary of Information Theory
 - Given to the authors of discoveries, advances and inventions that have had a profound impact in the technology of information transmission, processing and compression.
 - 1. Norman Abramson: For the invention of the first random-access communication protocol.
 - 2. Elwyn Berlekamp: For the invention of a computationally efficient algebraic decoding algorithm.
 - Claude Berrou, Alain Glavieux and Punya Thitimajshima: For the invention of turbo codes.
 - Ingrid Daubechies: For the invention of wavelet-based methods for signal processing.
 - ${\bf 5.} \qquad {\bf Whit field\ Diffie\ and\ Martin\ Hellman:\ For\ the\ invention\ of\ public-key\ cryptography.}$
 - 6. Peter Elias: For the invention of convolutional codes.
 - 7. G. David Forney, Jr: For the invention of concatenated codes and a generalized minimum-distance decoding algorithm.
 - 8. Robert M. Gray: For the invention and development of training mode vector quantization.
 - David Huffman: For the invention of the Huffman minimum-length lossless datacompression code.
 - 0. Kees A. Schouhamer Immink: For the invention of constrained codes for commercial recording systems.
 - 11. Abraham Lempel and Jacob Ziv: For the invention of the Lempel-Ziv universal data compression algorithm.
 - 12. Robert W. Lucky: For the invention of pioneering adaptive equalization methods.
 - 13. Dwight O. North: For the invention of the matched filter.
 - 14. Irving S. Reed: For the co-invention of the Reed-Solomon error correction codes
 - 15. Jorma Rissanen: For the invention of arithmetic coding.
 - 16. Gottfried Ungerboeck: For the invention of trellis coded modulation.
 - 17. Andrew J. Viterbi: For the invention of the Viterbi algorithm.

Viterbi Decoding: Ex. 1

- Suppose $y = [11 \ 01 \ 11].$
- Find $\hat{\mathbf{b}}$.
 - Find the message $\hat{\underline{\mathbf{b}}}$ which corresponds to the (valid) codeword $\hat{\underline{\mathbf{x}}}$ with minimum (Hamming) distance from $\underline{\boldsymbol{y}}$.

Each circled number at a node is the running (cumulative) path metric, obtained by summing branch metrics (distance) up to that node. Here, it is simply the cumulative distance.

- Suppose $y = [11 \ 01 \ 11]$.
- Find $\hat{\mathbf{b}}$.
 - Find the message $\hat{\underline{\mathbf{b}}}$ which corresponds to the (valid) codeword $\hat{\underline{\mathbf{x}}}$ with minimum (Hamming) distance from $\underline{\mathbf{y}}$.

- For the last column of nodes, each of the nodes has two
 thranches going into it.
- So, there are two possible cumulative distance values.

Viterbi Decoding: Ex. 1

- Suppose $y = [11 \ 01 \ 11]$.
- Find $\hat{\mathbf{b}}$.
 - Find the message $\hat{\underline{\mathbf{b}}}$ which corresponds to the (valid) codeword $\hat{\underline{\mathbf{x}}}$ with minimum (Hamming) distance from $\underline{\mathbf{y}}$.

99

- Suppose $y = [11 \ 01 \ 11]$.
- Find $\hat{\mathbf{b}}$.
 - Find the message $\hat{\underline{\mathbf{b}}}$ which corresponds to the (valid) codeword $\hat{\underline{\mathbf{x}}}$ with minimum (Hamming) distance from $\underline{\mathbf{y}}$.

- For the last column of nodes, each of the nodes has two branches going into it.
- So, there are two possible cumulative distance values.
- We discard the larger-distance path because, regardless of what happens subsequently, this path will have a larger Hamming distance from <u>v</u>.

Viterbi Decoding: Ex. 1

- Suppose $y = [11 \ 01 \ 11]$.
- Find $\hat{\mathbf{b}}$.
 - Find the message $\hat{\underline{\mathbf{b}}}$ which corresponds to the (valid) codeword $\hat{\underline{\mathbf{x}}}$ with minimum (Hamming) distance from $\underline{\boldsymbol{y}}$.

- For the last column of nodes, each of the nodes has two branches going into it.
- So, there are two possible cumulative distance values.
- We discard the larger-distance path because, regardless of what happens subsequently, this path will have a larger Hamming distance from <u>v</u>.

101

- Suppose $y = [11 \ 01 \ 11]$.
- Find $\hat{\mathbf{b}}$.
 - Find the message $\hat{\underline{\mathbf{b}}}$ which corresponds to the (valid) codeword $\hat{\underline{\mathbf{x}}}$ with minimum (Hamming) distance from $\underline{\mathbf{y}}$.

Note that we keep exactly one (optimal) survivor path to each state. (Unless there is a tie, then we keep both or choose any.)

103

Viterbi Decoding: Ex. 1

- Suppose $y = [11 \ 01 \ 11]$.
- Find $\hat{\mathbf{b}}$.
 - Find the message $\hat{\mathbf{b}}$ which corresponds to the (valid) codeword $\hat{\mathbf{x}}$ with minimum (Hamming) distance from \mathbf{y} .

- So, the codewords which are nearest to <u>y</u> is [11 01 01] or [11 01]
- The corresponding messages are [110] or [111], respectively.

- Suppose $\mathbf{y} = [11\ 01\ 11\ 00\ 01\ 10].$
- Find $\hat{\mathbf{b}}$.

same as before

00

The first part is the same as before. So, we simply copy the diagram that we had.

10

].

01

105

Viterbi Decoding: Ex. 2

- Suppose $\mathbf{y} = [11\ 01\ 11\ 00\ 01\ 10].$
- Find $\hat{\mathbf{b}}$.

same as before

- Suppose $\underline{y} = [11\ 01\ 11\ 00\ 01\ 10].$
- Find $\hat{\mathbf{b}}$.

107

Viterbi Decoding: Ex. 2

• Suppose $\underline{y} = [11\ 01\ 11\ 00\ 01\ 10].$

- Suppose $\mathbf{y} = [11\ 01\ 11\ 00\ 01\ 10].$
- Find $\hat{\mathbf{b}}$.

109

Reference

- Chapter 15 in [Lathi & Ding, 2009]
- Chapter 13 in [Carlson & Crilly, 2009]
- Section 7.11 in [Cover and Thomas, 2006]